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THE METHOD OF AVERAGING AND DOMAINS OF STABILITY
FOR INTEGRAL MANIFOLDS*

DAVID E. GILSINN"

Abstract. Liapunov’s direct method is a standard and effective approach to computing the domain
of stability (or region of attraction) of an autonomous ordinary differential equation. In this paper
the author investigates domains of stability of integral manifolds of solutions generated by nonlinear
mechanical and electrical oscillatory systems with many degrees of freedom. These manifolds are
families of solutions that exhibit stronger stability properties than individual solutions. The problem
of estimating the domain of stability of an asymptotically stable integral manifold is reduced to com-
puting the domain of stability of an associated autonomous system of differential equations. This is
done by applying the method of averaging to the system generating the integral manifold thus re-
moving angular and time dependences. The stability region of this associated system is then computed
and a result is established showing that this region is contained in the stablity region of the original
system. Several examples, including a coupled van der Pol system of oscillators, are considered.

1. Introduction. An integral manifold of solutions for an n-dimensional
system of differential equations is represented geometrically as a hypersurface
in (n + 1)-dimensional space with the property that if some value of a solution of
the differential equation lies on the hypersurface then the entire solution will also
lie on the hypersurface. The study of integral manifolds of solutions arises in the
analysis of nonlinear oscillatory systems with tn degrees of freedom of the form

(1.1) 5i -F co2i xi e.Xi(t, x1, xm, 1, "’", m),

where e > 0, and co > 0, for 1, ..., m. Local asymptotic stability of integral
manifolds has been studied by a number of authors, for example, Bogoliubov
and Mitropolsky [2, pp. 428-534], Hale [5, pp. 113-169], Hale and Stokes [7].
In this paper the author considers the question of nonlocal stability of integral
manifolds and approaches the problem by Liapunov’s direct method ofestimating
domains of stability in state space.

LaSalle and Lefschetz [10, pp. 56-71] have shown that Liapunov functions
can be used eftctively to compute the domains of stability of equilibrium points
for autonomous differential equations. Zubov [15, pp. 196-223] has shown how
to directly construct Liapunov functions in the neighborhood of asymptotically
stable periodic solutions. The stability properties of an integral manifold for some
n-dimensional systems can be studied, however, by introducing an appropriate
polar-type change of coordinates to isolate the angular and radial behavior of
the system. Under certain conditions the angular behavior of the system can then
be "averaged" out and the system decoupled. One of the resulting lower order
systems is autonomous. Bogoliubov and Mitropolsky [2, p. 501] and Hale [6]
have shown that the stability of integral manifolds for the original system can be
related to the stability properties of equilibrium points of the autonomous sub-
system. The author shows here, furthermore, that the domains of stability of these
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INTEGRAL MANIFOLDS 629

equilibrium points are related to, and can be used to estimate, the domains of
stability of integral manifolds for the unaveraged system. These results extend to
the case of integral manifolds some results due to Loud and Sethna [11], Sethna
[12], and Sethna and Moran [13].

Let Ep be a p-dimensional Euclidean space with vector norm Ixl such that
iX (X -- X -+- -[- X2p) 1/2 Up a domain in EP; and Sp(xo, p) the set of x E
such that ix Xol _-< p. If S c Ep, let Sp(S; p) be the set of all x Ep such that for
some xoS, ]x Xol __< p.

Let E E Ek U V [0, %], where U", V" are domains in E", E",
respectively, eo > 0 is fixed, and let Co(E be the set of continuous vector-valued
functions f(t, 0, x, y, e) on E. Two subclasses of functions will also be introduced.
Let A,,(O, x, y) be the class of functions in Co(E) that, for each fixed e [0, eo],
are almost periodic in t, uniformly for (0, x, y) E U Vn. For the properties
ofalmost periodic functions see Bohr [3]. Let Po(t, x, y) be the class of all functions
in Co(E) that are multiply periodic in 0, of vector period o, independent of t, x, y,
where o (ol, o2, Ok), 0i > 0 for 1, k.

Let Bo(D be the set of functions in Co(E such that If(t, O, x, y, e)J <= D.
Set 2(e) to be the Lipschitz constant for f Co(E) with respect to 0, x, y, where

If(t, O,x,y,e)- f(t, O’,x’,y’,e)l <= 2(e){[0- 0’ + Ix x’[ + ]y-

2(e) is assumed to be continuous and bounded in e, uniformly in t. In particular,
suppose 2(e) __< 2 for all e [0, eo]. Finally, let Lip (0, x, y; 2(e)) be the set of all
f Co(E) that are Lipschitzian in 0, x, y with Lipschitz constant 2(e), for each

[0, o3.
If A is a matrix applied to x Ep, then let

Note that
[IA

i,j

Finally, if S is any set then the boundary of S will be denoted by c3S.

2. Preliminary results. Consider a system of differential equations of the type

(2.1)
dx

X(t, x, g).
dt

Here x, X e E", an n-dimensional Euclidean space, e E, and 0 < e __< eo, for
some fixed eo X is assumed to be continuous in the variables t, x, e. Let the solution
of (1.1), passing through the point (xo, to), be given by x(t, e), where x(to, e) Xo.

Let e > 0 be fixed and suppose that there exists an (s + 1)-dimensional
surface M(e), s <= n, in the (x, 0-space given in parametric form by

(2.2) M(e) {(x, t)lx F(t, c,, cs, g), (- co, co)},
where F is continuous in t, ci, e, 1, ..., s. The surface M(e) is called an (s + 1)-
dimensional integral manifold for (2.1) if any solution x(t, e) through (xo to) e M(e)
has the property that (x(t, e), t) m(e) for e (- co, co).
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An integral manifold for (2.1) is called stable if for any r/> 0 there exists a
6 > 0 such that ifd((x0, to), m(5)) < 6 then, for >= o d((x(t, 5), t), m(5)) < r/, where
X(to, 5) x(R) and d((x, t), M(5)) represents the distance between the point (x, t) and
the set M(5) in (n + 1)-space. M(5) is asymptotically stable if M(5) is stable and

(2.3) lim d((x(t, 5), t), M(5)) O.

The domain of stability, Ao, for an asymptotically stable integral manifold M(5)
is the set of all xo E" such that if x(t, 5) is a solution of (2.1) with x(0, 5) xo,

then (2.3) holds.
A simple example of an integral manifold can be given by considering the

autonomous system

(2.4) X(x).

Suppose that p(t) is a periodic solution of (2.4) of period T. For any constant c,
p(t + c) is also a periodic solution of (2.4) with period T. Let x F(t, c) p(t + c).
Then,

M {(x, t)[x F(t, c), (- , )}
is an integral manifold for (2.4) and forms a cylinder in (x, t)-space.

By increasing the dimension of the system, equations of the form (1.1) are of
the general class (2.1). Krylov and Bogoliubov [9, p. 87] and Bogoliubov and
Mitropolsky [2, p. 445] have studied systems of the form (1.1) by introducing
either rectangular or polar type coordinates. Depending on the transformation
used the coupled system of oscillators could be reduced to a general system of
the type (2.1), and in fact took either of the general forms

(2.5)

where x, X are 2m-vectors, or

(2.6)

5X(t, x),

0 d + 5(R)(t, O, p),

5R(t, O, p),

where d (1, 1, ..., 1) and 0, p are m-vectors.
In this paper a more general system covering systems of the form (2.5) and

(2.6) will be studied. In particular, consider the system

dO
d(5) + 50(t, O, x, y, 5),

dt

dx
(2.7)

dt
5X(t, O, x, y, 5),

dy
Ay + 5 Y(t, O, x, y, 5),

dt

with the following assumptions"
H 1.0 <= 5 5o 0, d(5), 0 Ek’, X, X U c E and y, Y V" c E"’, d(e) 1

+O(5) wherel (1,1,..., 1)eEk.
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H2. (R), X, Y, and their first and second partial derivatives with respect to 0, x, y
are bounded and uniformly continuous with respect to t, 0, x, y, e, i.e., (R), X,
Y Bo(M for some M, as well as the first and second partials.

H3. (R), X, Y e At,(O x, y) f) Po(t, x, y).
Remark. Assumption H2 implies that (R), X, K e Lip (0, x, y; 2(e)) for some

function of 2(e). This assumption can be weakened, but for the purposes of this
paper H2 is sufficient. For further discussion the reader is referred to Hale [6]
for results with weaker assumptions.

DEFINITION 2.1. Let f(t, O, x, y, e) Co(E). Define the average, fo, of f with
respect to and 0 by the relation

(2.8) fo(x, y) lim fToo T
f(t + s 0 + s x y O)ds

provided the limit exists uniformly with respect to (t, O,x,y)e E x Ekx
x V" and is independent of and 0. In (2.8), 0 + s (01 + s, 02 + s, ..., Ok + S).
A sufficient condition for the limit to exist independently of and 0 can be given
iffis also periodic in with period coo, say. This result is given in Hale [5, p. 119].
In particular, let coo, o91,..., COk be the periods off with respect to t, 0i, 1,
.., k. Suppose that co 1, CO- 1, co[ are linearly independent over the integers.
Expandfin a Fourier series (with equality in the L2 sense).

f(t, O, x, y, e) Co...o(X, y, e)

+c"’""k(x Y’)exp[2rci n nk )1+ +
coO co

where Ik {(no, , nk)lni, O, 1, ..., k, integers, n + + n 4= 0}. Averag-
ing over [0, T],

T f(t + s 0 + s x y O)ds Co..o(X y O)+ C,o...,(x y O)

exp 2rci n + + --O
k COo co

exp 2rci[no + + sds
COo

Since co 1, co]- 1, coff are linearly independent over the integers noo +
+ nk/cok ,/= O, the right-hand side becomes in the limit Co...o(X, y, 0), which is
independent of and 0.

One further assumption will now be made for (2.7).
H4. Suppose there exists a point Xoe U such that Xo(xo,O 0. Let

(cXofi?x)(xo, 0) and A have eigenvalues with negative real parts.
System (2.7) now satisfies sufficient conditions for existence and asymptotic

stability of an integral manifold. In fact Hale [6] proves the following.
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THEOREM 2.2. Under the assumptions H1-H4for system (2.7) there exist posi-
tive constants 1, fro, c, y and functions f(t, O, e), g(t, O, e) of dimensions m and n,
respectively, satisfying the following properties"

Pl"For 0 <__ < el,f(t,O,),g(t,O,e)arecontinuousin(t,O,)E Ek 0,el]
and are multiply periodic in 0 with vector period co. For each fixed e [0, eli, land
g are almost periodic in uniformly with respect to 0 Ek.f(t, 0, 0) xo g(t, O, O) 0
and If(t, O, e.) Xo[ < ro, [g(t, O, e)[ < ro for all t, 0 and (0, ].

P2" For each fixed [0, 1], x f(t, O, ), y g(t, O, ) is a parametric
representation of an integral manifold for (2.7). Call this integral manifold M(e).

P3" Let (x 1,yl)S((xo,0);ao) and 01 Ek be arbitrary. Suppose that
(O(t), x(t), y(t)) is the solution of(2.7) such that 0(tl) 01, x(t) xl, y(tl) Yl for
some time Then for >=

Ix(t) f(t, O(t), e)[ __< c{exp [-ey(t tl)]} {Ix1 f(tl, 01,

+ ly g(t, 0, e)l},
ly(t) g(t, 0(t), e)l -< c{exp [-y(t ta)]} {Ixa f(t, 0a, e)l

/ lY g(tx,Ox,e)l}.

The definition of domain of stability must now be specialized somewhat for
system (2.7). The following definition will be used throughout this paper.

DEFINITION 2.3. The domain of stability of the integral manifold M(e) of (2.7)
is defined to be

Ao {(0o, Xo, yo)10o Ek arbitrary, and if (0(t), x(t), y(t)) is the solution
of (2.7) such that 0(0)=0o, x(0)=xo, y(0)=yo, then
Ix(t) f(t, O(t), e,)l 0 and ly(t) g(t, O(t), e)l 0 as - }.

Remark. From Hale’s result (Theorem 2.2) it is clear that A(R) is nonempty
since for 0,

Ek S((xo, 0); r(R)) c Ao.

In general A(R) encompasses a much larger region. This then is the main problem:
Estimate the size of Ao, if possible.

There is another result proved by Hale [5, p. 116] that is closely related to
Theorem 2.2. This result lays the groundwork for the rest of the paper.

THEOREM 2.4. Let (2.7) satisfy the assumptions H1-H4. Let (R)*(t, O, x, y, e),
X*(t, O, x, y, e) satisfy the same conditions as 0, X in Theorem 2.2. It is further
assumed that

O(x, y, ) o, X(x, y, ) o.
Then the conclusion of Theorem 2.2 also holds for

0 d(e) + eO(t, O, x, y, ) + e(R)*(t, O, x, y, e),
(2.9) . X(t, O, x, y, e) + eX*(t, O, x, y, e),

.P Ay + eY(t,O,x,y,e).
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Returning to systems (2.5) and (2.6), suppose that the following averages
exist, independent of and 0:

Xo(x) lim fi- X(t, x) dt,

(2.10)
(R)o(P) lim f-- O(t + s, 0 + s, p)ds,

Ro(p) lim R(t + s 0 + s p) ds
T--} -One now has the averaged systems

(2.11) eXo(x

and

(2. 2) 0 d + (R)o(p), R0(p).

Considering for the moment system (2.6) one can rewrite (2.6) as

(2.13)
0 d + eOo(p)+ eO*(t, O, p),

eRo(p) + eR*(t, O, p),

where

(2.14)
o*(t, o, p) o(t, o, p) Oo(p),

R*(t, O, p) R(t, O, p) Ro(p),

and

(R)’(p) R(p) O, from (2.10).

Theorem 2.2 now applies to (2.12) and Theorem 2.4 to (2.13), without the third
equation in the system. This suggests that one might compare in some manner
the solutions of (2.12) against those of (2.6). The solutions of (2.12) yield a first
order approximation in . These approximations have been studied extensively
by Krylov and Bogoliubov 9, p. 8] and Bogoliubov and Mitropolsky [2, p. 387].

System (2.5) is a particular case of (2.7), but without the 0 and y subsystems.
Loud and Sethna [11], Sethna [12], and Sethna and Moran 13] have proved some
results that relate the domains of stability of asymptotically stable equilibrium
points of(2.11)to the domains ofstability of periodic and almost periodic solutions
of (2.5). It is these results the author wishes to extend to the case of integral mani-
folds of (2.7). A comparison theorem will be proved in the next section which will
be the fundamental tool. The motivation of the theorem was the formulation of
Theorem 2.4, and in particular system (2.9).
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3. Fundamental comparison theorem. In this section a proof will be given of a
comparison theorem between the solutions of system (2.7) and those of

dO
d(e) + e(R)o(X, y),

dt

(3.1)
dx
dt

eXo(x, y),

dy
dt

Ay + eY(t, O, x, y, e).

System (3.1) will be referred to as the averaged system. This result will extend a
theorem on averaging due to Bogoliubov and Mitropolsky [2, p. 429] to systems
of the form (2.7). In order to simplify the proof somewhat several lemmas are
needed.

LEMMA 3.1. Let P(t) be continuous for >_ 0 and satisfy IP(t)] <-_ M and let the
eigenvalues of the matrix A all have negative real parts. Then there exist positive
constants, b, c such that

for >_ O, and the solution of

eAt c e- ’’

dx
Ax + eP(t)

dt

satisfies

where xo x(O).
The proof of this lemma is omitted, but it follows as a direct consequence of

the variation of parameters formula.
LEMMA 3.2. Let f(t) be a continuous function and er > 0 for r 1, 2, n. Set

U, {(tl, "", t,)lt, + 2 +’’" -+- <= 1, > O, i= 1,..., n}.
Then Dirichlet’s integral is given by

ff(t + 2 + + tn)t]’ t22- tn. dt dt2 dt.

r(,)F(a2).., r(.) fjF - 2 -+- :7-,) f(s)s as,

ai) and F(a) is the gammafunction.where fl
Proof. See Whittaker and Watson [14, p. 258].
LEMMA 3.3. Let x E" and suppose that
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where

Aa{1 Ixl2/a2} 2,
Ao(x)

0,

and A is the normalizing constant such that

fE Aa(x) dx 1.

Then

Ix[ < a

Ixl > a,

F(n/2)n(n + 2)(n + 4)
16 7T, n/2an

and

3 n2(n + 2)(n + 4) F(n/2)I, <-
1/2a(n2 r + 1)(n + 3) F((n + 1)/2)

Proof. The first problem is to compute Aa. To do this note that

fE f f{ 2 i i 2 2} dX1 dXn"(3.2) Aa(X dx A -- x2i + - x xj
i=1 i=lj=l

Ixl-<a

Use Lemma 3.1 to compute the individual integrals. To illustrate the tech-
nique consider

f...fdxldxz...dx..
The set of x such that Ixl _-< a is equivalent to the set of x (Xx, ..., x,) such that

+...+ _<1.

Then

O<-xi
i= 1,...,n

Set (xi/a)2. Then xi at]/2 and dx (a/2)t]/2- dti. Thus

f...f dx dxn--2.f...faXl ax.
O<=x

i= 1,...,n

tl + +tn <-

2a" 7n/2

n r(n/2)
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by Lemma 3.2 and the fact that F(1/2) a: 1/2. By similar arguments it is not hard
to show that for each given i, j,

and

f f a + 2 7.f,n/2x dXl dx,,
n + 2 F((n + 2)/2)

f f a + 4 7.f,n/2
2 2 dx dx,,xixj 2(n+4) F((n+4)/2)

From these integrals one gets, by (3.2),

fE Aaann/216
Aa(x dx

F(n/2)n(n + 2)(n + 4)’

where repeated use has been made of the recurrence formula F(1 + z) zF(z),
with z n/2.

In order that

choose

Aa(X) dx

F(n/2)n(n + 2)(n + 4)
16n/2a

This proves the first part of the result.
Next, it is clear that

Then one only needs to estimate, for each j,

4Aa { IxI21_

Ixl-<a

4Ao[! f2 ,.,4A[af’"fx’lxjldxlIxldx -I<a Ixl-<a

By previous arguments,

f y Ixjl dx= 2" f f xjdxl ...dx,
Ixl <=a ix

O <-_
k= 1,...,n

2an+ Is(n- 1)/2

(n + 1)F((n + 1)/2)
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and

Then

f x{Ixjl dx dx,
Ixl =<a

2a" + 3(n- )/2

(n + 1)(n + 3)F((n + 1)/2)

Finally,

c3A,(x)l 3 n(n + 2)(n + 4) F(n/2)
Oxj

dx -" nl/---’-d" (n + 1)(n + 3) F((n + 1)/2)"

c3A,,(x)] 3 n2(n + 2)(n + 4) r(n/2)
cx 2 nX/2a(n + 1)(n + 3) F((n + 1)/2)

and the result is complete.
Remark. For n 1, 2 the estimates in Lemma 3.3 become, respectively,

dAa(x) 45
dx dx <__

16a’
and

cx
96

dx <
5rca

The next lemma is an extension of a result due to Bogoliubov and Mitro-
polsky [2, p. 429].

LEMMA 3.4. Let W(t, O, x,y, e) Co(E) f’] A,,(O, x, y) fq Po(t, x, y) f’l Lip (O,x,
y; 2(e)), where 2(e) =< 2 on (0, eo]. Finally suppose Wo(x, y) 0 for (x, y) U V".
Then, given L > O, # > 0 and Do a subset of U" V" such that, for some a > O,
Sm+,(O0 ) c U V", (Do could also be chosen as a compact subset of U V"),
there exists a function u(t, O, x, y), and a function G(e) such that G(e) 0 as e 0
and if 0 <= <= Lie then for 0 Ek and (x, y) Do one has

(i) u(0, 0, x, y) 0,
(ii) the first partials of u with respect to t, O, x, y exist and

-(t, O, x, y) + t, O, x, y) w(t, O, x, y, o)
p=l

(iii) Iul, e e eyy _<G().

Proof. Choose a so that a < #/(32) and construct the following functions"

Fa(0) _{ dl{1 -lOI2/a2} 2, 10l _-< a,

0, 101 > a,

{ d2{1 -Ixl2/a2} 2, Ixl _-< a,
Aa(X)

0, Ixl > a,

d3{1 -lyl2/a2} 2 ly[ < a
a(Y)--

0, lyl > a,
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where

F(k/2)k(k + 2)(k + 4)
16k/2ak

r(m/2)m(m + 2)(m + 4)
16m/2am

and

r(n/2)n(n + 2)(n + 4)
16rCn/2an

Then, from Lemma 3.3,

(3.3)

3 k2(k + 2)(k + 4)r(k/2)
dO <-

2 rc/2a(k + 1)(k + 3)F((k + 1)/2)’

gAa(x)l 3 m2(m + 2)(m + 4)F(m/2)
2 r/2a(m + 1)(m + 3)F((m + 1)/2)’

3 n2(n + 2)(n + 4)F(n/2)
Oy ’l dy < - rt/2a(n + 1)(n + 3)F((n + 1)/2)"

Define the following function of (t, 0, x, y)"

u(t, 0, x, y) | F(0 e)a,(x fl)f,(y 3;)
kxD

(3.4)
W(s, s + o t, fl, 2, O) ds dot dfl d/,

where D U" x
Since Wo(x, y) 0 there exists a function f(t) such that f(t) --+ 0 as --, +

f(0) finite, and

(3.5) W(s, r + s, x, y, O) ds <__ tf(t)

for all >= 0, uniformly in r, x, y. Then from (3.4) and (3.5), one has for (t, 0, x, y)
E x Ek x D that

(3.6) lu(t, O, x, Y)I tf(t),

and conclusion (i) follows as an immediate consequence of (3.6), i.e.,

(3.7) u(0, 0, x, y) 0

since f(0) is finite.
For (t, 0, x, y)e E x Ek D, using (3.4), we have
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since

in (3.4) and I was defined in Lemma 3.3. Furthermore,

(3.8b)

c][ __< ntf(t)IT,.

Equation (3.4) can be rewritten as

u(t, 0, x, y)= f ra(d)A,(x- B)6,(y- )
kxD

(3.9)
W(s,s+O-4- t, fl,,O) ds d4dfld.

Taking partials of (3.9) with respect to gives

(t, o, x, y)

(3.10)

fv F,(dp)A,(x- )6a(y- 7)
p=l kxD

Taking partials of (3.9) with respect to each coordinate 0 of 0 gives

au
(t, O, x y)= fg L(4)A,(x- fl)6a(y- Y)

kxD

(s, s + 0 t, , , o es .
Let (x, y) be any point of Do Then there exists a number a a(Do) such that

S+((x, y); a) c D for all (x, y) e Do. For any (x, y) e Do and an arbitrary 0,

x

f A.(x- fl)6a(y- y)dfl dy

(3.11)
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since YEk Fa(O a) da Ek Fa(0 dO by the definition of Fa, d and Lemma 3.3,
as well as the fact that Aa(X fl) 6a(Y 7) 0 for Ix fll > a and lY 71 > a.
From the definition of Aa, 6 and d2, d3, the normalizing constants,

f-Bl <=a
Aa(x fl)b"(Y 7) dfl dT [fE’ Aa(x fl) dfll [fe. (a(Y Y) dY1

1 <=a

1.

Therefore,

(3.12) fE Fa(O oOAa(x fl)(a(Y 7)do dfl d7 1.
kxD

Pick a so that

0 < a < min (a(Do) ,//(32)).

This value of a will be used for the rest of the proof. From (3.10)and (3.11), for any
(x, y) Do,

(3.13)

c3u
(t, O, x y)+ (t 0 x y)

Ot p=l Vp

Fa(O a)A.(x fl)b.(y 7)W(t, a, 7, O)da dfl d,

and from (3.12),

-(t, O, x, y) +
p= -(t, O, x, y) W(t, O, x, y, O)

(3.14) <= f ra(O )Aa(X-
kxD

W(t, , fl, , 0) W(t, 0, x, y, 0)l d dfl dT.
Taking I 0l =< a, Ifl xl =< a, and lY 71 =< a, we then have

W(t, , fl, , 0) t, 0, x, y, 0)l

=<2(a){Is-01/ 113-x1/ 17-
=< 32()a.

Since 2(e) is bounded for e (0, to] then there exists a bound 2 such that
() __< .

Therefore, for (t, 0, x, y) E E x D, (3.14) becomes

ua&(t, O,x, y)+ (t 0 x y)p=lp(3.15)
W(t,O,x,y,O) <= 32a </.
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Introduce the function

(3.16) F() sup sf(s/),
O<_s<_L

wheref(t) was chosen for inequality (3.5). F(e) has the property

(3.17) F(e) - 0 as e --. 0.

Let e (0, eo] and choose [0, L/e]. Then from (3.16),

(3.18) leu(t, O, x, Y)I -<- etf(t) <= F(e)

for all 0 and (x, y) Do. Furthermore, from (3.8),

Letting

(3.19)
the conclusion follows.

U =< ketf(t)I =< kIF(),

=< metf(t)I =< mI’F(e),

<= netf(t)I"a <= nI]F(e).

G(e) (1 + klk + mI’ + nP,)F(e),

The main theorem can now be proved.
THEOREM 3.5. Let p > 0 be a given constant, and (dp(t, e), (t, e), rl(t, e)) be a

solution of (3.1) defined for all > 0 such that there exist constants p > O, L > 0
with the property that S,+,(((t, e), rl(t, e)); p) D U V" jbr 0 <= <= Lie and
0 < e <= eo. Then there exists e* > 0 such that if 0 < e <= e* and (O(t, e), x(t, e),
y(t, e)) is the solution of (2.7) with 0(0, e) rk(O, e), x(O, e) (0, e), y(O, e) rl(O, e),
then for 0 <= <= L/e,

l6(t, e) O(t, )[ < #, [(t, e)- x(t, e)l < #, Ir/(t, e) y(t, e)] < #.

Proof. Define

(3.20)
O*(t, 0, x, y)---- O(t, 0, x, y, 0) Oo(x, y),

X*(t, O, x, y) X(t, O, x, y, O) Xo(x, y).

Then for any (x, y) D,

(3.21)

Let

(R)(x, y) X’(x, y) O.

(3.22) v <
8 e2’

and let Do be a compact subset of the domain D.
One may conclude from Lemma 3.4 that there exist functions ul(t, O, x, y),

u2(t, O, x, y) and G(e) with G(e) --* 0 as e 0 such that if0 < e __< eo and 0 <= <_



642 DAVID E. GILSINN

then for 0 e Ek and (x, y) e Do"
(a) u(0, 0, x, y) u2(0, 0, x, y) 0;
(b) The first partials of ui, 1, 2, with respect to t, 0, x, y exist and

(t, 0, x, y) (t, 0, x, y) O*(t, 0, x, y)

_
v,

=1
(3.23)

-[t, O, x, y) +
p= -p(t, O, x, y) X*(t, O, x, y) <= v;

(c) For 1, 2,

Introduce a local transformation

< G(e)

0 O(t, ) ,(t, ) + eu(t, (t, ), (t, ), ,(t, )),

(3.24) (t, e) (t, e) + eu2(t, (t, e), (t, e), r/(t, e)),

y y(t, ) /(t, ),

where ((t, e), (t, e), r/(t, e))is the solution ofsystem (3.1)with Sm+(((t, e), r/(t, e)); p)
D for e [0, L/e]. For the rest of the proof the argument and parameter e will

be suppressed in the functions , , r/, 0, 2 and y.
Form the new system

dO
dt

d(e)- eO(t, 0 2 y e)= R l,

d2
(3.25) dt

eX(t, O, , y, e) R2,

Ay eY(t, 0,, f,e) Ra.

Since (, {, r/) satisfy (3.1) one can compute the error terms R,, R2, Ra Using
(3.24) and (3.25),

(3.26)

(continued)
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(3.26)
(continued)

Let M be the bound for (R), X, Y, (R)o, Xo and/l the Lipschitz constant. From the
uniform continuity of (R) and X in E there exists a function h(e) such that h(e) --, 0 as
e 0 and

<
(3.27)

I(R)(t, O, x, y, O) O(t, O, x, y, e)l h(e),

IX(t, O, x, y, O) X(t, O, x, y, e)l =< h(:).

Therefore, for e (0, eo] and 0 L/e,

u

a IXo(, )1

+ e
0 IIA I1

an I(t, , , n, )1 + elO(t, , , n, o)

O(t, + u, + u, , 0)1 + elO(t, + u,

+ u, q, 0) O(t, 4 + u, + u, q, )1,

and thereBre from (3.23) and (3.27),

IRI v + {22e + Id(e)- 1 + 3eM}G() + h()
(3.28)
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Since the eigenvalues of A have negative real parts Ileatll <= c e -bt for some
constants b, c > 0, and from the third equation of (3.1) and Lemma 3.1,

(3.29) I1 -< ko e-b’ +

where ko Ir/(0)lc. Introducing (3.29) into (3.28) yields

IRI =< v / {22e + Id(e)- 11 + 3eM}G(e) + eh(e)
(3.30)

+e
c3r/I

A koe +

IR21 and IR3[ can be estimated in a similar manner. Taking norms one gets for
0 <= <=

u uIN2[ =< e -fit- + p=l O(Dp
x*(t, (D, , )

+ 11 4 I(I- 1 + M

(3.31)
+ e22[ux[ + elX(t, + eux, + eu2,r/,0)

X(t, 49 + eu, + eu2, rl, e)l

=< ev + {22e + Id(e)- II + 3eM}G(e)+ eh(e)

+
Or/ IAII ko e +

Finally, estimating IR3[ for 0 <= <= L/e,

(3.32) IR31 el Y(t, ok, , rl, e) Y(t, ck + eu, + eu2, r/, e)l =< 2e2G(e).

Let (0o, Xo, Yo)e Ek x D and (O(t), x(t), y(t)) be a solution of (2.7) such that
0(0, e) b(0, e) 0o, x(0, e) (0, e) Xo and y(0, e) r/(0, e) Yo. Then, by
continuity, there is certainly some interval 0 __< __< t*, with t* <_ L/e, such that
(x(t), y(t)) e D on l-0, t*]. Eventually it will be shown that t* L/e. For the moment,
let e [0, t*] and consider the system representing the difference between (2.7) and
(3.25)"

0) e[(R)(t, 2, y, e) (R)(t, 0, x, y, e)] + R,0,

d
(3.33) (ff x) e[X(t, O, , y, e) X(t, O, x, y, e)] + R2,

d
dt

(y y) A(y y) + elY(t, O, 2, y, e) Y(t, O, x, y, e)] + R3.
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For [0, t*],

d
(0- 0)

(3.34)
d
(x x)

R{10-0l+l-x]+ lY-yI}-I-IR

{10- 01 + I- xl + lY- yl} + IR21,

d
-(y y) A(y y) + elY(t, O, 2, y, ) Y(t, O, x, y, e)] + R3,

where 2 is the Lipschitz constant for 19, X. From (3.24), (0) q(0) y(0) Yo.
Therefore on the interval 0, t*] the variation of parameters formula gives

I Yl =< e IleA(t-s) lilY(s, 0, , y, e) g(s, 0, x, y, e)l ds

/ IleA(t-S) IR3(s)[ ds

(3.35)
<__ 2ecM e- b(- ) ds + ec

2ceM 2eE2cLG(e)<
b b

e- b(,- )IR 3(s)l ds

since YI M.
Therefore, for 0

_
t*, (3.34) reduces to

(3.36)

(0- 0) <e2{10-0l+l.-xl} +2
2ecM 22cLG(e) 2

+ {(22 + 3M)e + Id(e) l}G(e)

+ eh(e)+ e
Ol tlall ko e-b’+ + eV,

(x x) {[0 o[ + Ix x[} +
2

+ 22cC6(e)b
+ {(2 + M) + la()- l}6(e)+ h()

+elql AI oe- + +ev.

In order to estimate the size of 0- 0] and ]2- x] consider a new vector
formed by

and define

10- 01 + I- xl.
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Then for [0, t*],

(3.37)

O Ox) { 2ecM 22cL(02}< 22 + 2e2 +b

+ 2{(22 + 3M)e + Id(e)- ll}G(e)+ 2.h(e)

+IIAII koe-’+ IN + N +2.

Solving the differential inequality (3.37), keeping in mind that 0(0)= (0),
0(0) 2(0) (0) x(0), one gets, for t s [0, t*] and 0 < e N eo,

0-) f [ {2e;M 22cG(e,e2)< e2ex(t-) 2e2 + + 2ev
2

+ 2{(22 + 3M)e + [d(e) l[}G(e) + 2eh(e)

(3.38)

ds

+ (22 + 3M)

+ld(0-11 211AIIko cM1,,le +
b + G(e).

But v was chosen in (3.22) so that (e2ZL//)V < #/8, thus pick e* so that if0 <= e _< e*,
then

I2 e2LcM1 [e2t"-] I22cLe,2+ L----3h(e)+ezI" +(22+3M)

+ Id(0- 11 211AIIko ItAIIcM]
and

2ecM 22cLG(e)e2as well as b + b <"
Then for 0 < e =< e*, e [0, t*],

I- xl < ,(3.39) l0- 01-< , 12P Yl =< ,
and considering (3.22),

10- 01-< 10-- 01 + 10- 1 < .
Similarly Ix- 1 </, lY- r/I </z, and the conclusion holds.
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One can now show that t* L/e. Let

t’-- 1.u.b. {tl Irk 01 =</, I xl < p, It/- yl <

If t’ L/e then the proof is finished since one could have t* t’ L/e above.
Suppose that t’ < Lie. Then on the interval [0, t’], one difference, say Ib 01, must
satisfy Irk 01 < # for e [0, t’) and [tk(t’) 0(t’)l #. But, for 0 < e =< e*, G(e) <
#/2. Let 09 1/2{(p/2) G(e)} and note 09 > 0. Then

p [q(t’)- 0(t’)[ =< [0(t’)- 0(t’)[ + [cUll <= + a(e)

<P+# 2a,<

which is a contradiction. Thus take t* t’ LIe.
Bogoliubov and Mitropolsky [2, p. 429] proved a version of Theorem 3.5

under the more restrictive assumption that the solution of (3.1) lies with its p-
neighborhood inside D for all > 0.

4. Domains of stability. Consider the following system"

(4.1)
dx

eXo(x y)
dy

d---[ d---[ Ay.

From hypothesis H4 system (4.1) has an asymptotically stable equilibrium point
(Xo, 0). From Theorem 2.2 there exists an asymptotically stable integral manifold
for (2.7). Let Ao be the domain of stability of the integral manifold x f(t, O, e),
y g(t, O, e) of (2.7). Furthermore Theorem 2.2 implies that Ao is not empty. The
following result is an analogue of one due to Loud and Sethna [11] and gives a
tool to estimate Ao.

For the results of this section we will make the restriction that D U" x V"
has a compact closure. D, for example, could be a large bounded set in E"+".

THEOREM 4.1. Let DO be the domain of stability of (Xo, O) for system (4.1),
where DO D. Let C c DO be a closed set and 0 C an open set with the property
that, if (x(t), y(t)) is a solution of (4.1) such that (x(0), y(0)) e; O, then (x(t), y(t)) t3C
for >= O. Then for e sufficiently small Ek O Ao.

Proof. Let ao be given by Theorem 2.2. Let (01, xl, Yl) gk 0 be arbitrary.
Let ((t), r/(t)) be the solution of (4.1) such that (0) xl, r/(0) Y and tk(t) the
solution of

d() + e0o((t), r/(t))

such that tk(0) 01. Then (b(t), {(t), r/(t)) is the unique solution of

dO
d(e) + cOo(x, y),

dt

dx
(4.2) d---- eXo(x, y),

dy
--=Ay,
dt

such that b(0) 01, (0) x l, r/(0) Y l.
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From the hypotheses ((t), r/(t)) cC and, since O c Do, there is a set
Sm+,((Xo, 0); P0) = O such that ((t), q(t)) Sm+,((Xo, 0); Po) for >_ for some
> 0. One can then choose a uniform p*-neighborhood of ((t), q(t)) for >= 0

contained in O.
By introducing a change of variables, et in (4.1), and using H4 it is easy

to find an L > 0 such that if0 < e __< Co, then for > L/2e,

(4.3) I(t)- xol < -, Ir/(t)l < 3’

using the fact that (xo, 0) is asymptotically stable. Now choose el _-< eo, el > 0,
such that if 0 < e __< el then, if M is the uniform bound for Y, as before,

(4.4) e McbeL < min oo )
where b and c have been chosen positive constants so that [leAtll c e -at, for
> 0. This is always possible by assumption H4.

Let e (0, eli and ($(t), u(t), v(t)) be the solution of system (3.1) such that
(0) 01, u(0) x l, v(0) Y l. Then consider

d
dS(q )= [Oo(U. v)- 0o(. ,)].

d
(4.5) d-Z(u ) e[Xo(u, v) Xo(, q)],

d
(v rl) A(v ?) + e Y(t, k, u, v, e).

Since Y is uniformly bounded by M one has from Lemma 3.1,

and then,

(4.6)

b e

u l < e2c)’M|[’" ecM
b do

e(-S) ds =< - e.L

< min

for all t [0, L/e], where 0 < e =< e Thus, for 0 <= <_ L/e, (u(t), v(t)) D along
with its p*/4-neighborhood provided 0 < e __< el.

By Theorem 3.5 choose e* =< el such that if (O(t), x(t), y(t)) is the solution of
system (2.7)with 0(0)= 01, x(0)= xl, y(0)= y, then for 0 <= <__ L/e, e(0, e*],

(4.7) 10(t)- qt(t)l < a ao ao
3

Ix(t)- u(t)l 3’
< ly(t)- v(t)l

3
<
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Let 0 < e =< e* and t* be chosen so that (L/2e) < t* < L/e. From (4.3), (4.6), and
(4.7),

Ix(t*)- Xol =< Ix(t*)- u(t*)l + [u(t*)- (t*)l + [(t*)- xol < 3(ao/3)= ao,
(4.8)

ly(t*)l =< ly(t*)- v(t*)l / Iv(t*)- r/(t*)l / Ir/(t*)l < 3(Cro/3)= Cro.

Then Theorem 2.2 yields

Ix(t) f(t, 0(t), e)l ---, 0, ly(t) g(t, O(t), e)l 0

as oe, provided 0 < e e*. Therefore (01, x l, Y l)6 Ao or E O = Ao.
In order to apply this theorem to specific situations one must be able to

determine the sets Do, C and O with the required properties. The next results
will show a method of computing these sets based upon Liapunov functions. The
results and methods are analogous to those of Loud and Sethna [11] and, in
particular, if system (2.7) does not have the 0 and y equations the results are
identical to those of Sethna and Moran [13].

Returning to system (4.1), introduce the change of variable w x Xo and
rewrite (4.1) in the form

dw dy
(4.9)

dt
eCw + e{Xo(w + xo,y) Cw},

dt
Ay,

where C (OXo/OX)(Xo, 0), (x, y) D.
For later reference we will introduce the notation 4.1)(x,y) to mean

4.1)(x,y) grad V(x,y).(c,p), where 2 and .P are given by system (4.1). The
subscript (4.1) refers to the system along whose solution the time derivative of V
is being considered.

THEOREM 4.2. Let there exist a continuous scalarfunction V(w, y) for (4.9) such
that V(0, 0) 4.9)(0, 0) 0, V(w, y) > 0 and ,.9)(w, y) < 0 for (w, y) 4: (0, O) in

"1 where -l {(W, y)lV(w, y) < 1}. Let Do(1) {(w + xo, y)l(w, y)e "1}. Oefinefor
ri, an arbitrary parameter, such that 0 < tl < l,

C, {(x, y)l(x, y) D, x Xo + w, where (w, y)6 fl-,},
where

and

where

"l-r/ {(W, Y)I V(w, y) <_ rl },

O, {(x, y)l(x, y) e D, x Xo + w, where (w, y) e l-.},

t_, {(w, Y)I V(w, y) < if}.

Then,for each r (0, 1), the sets Do(l), C, and O, satisfy the hypotheses of Theorem
4.1.

Proof By a fundamental result on stability due to LaSalle and Lefschetz
10, p. 59] the set Do(l is contained in the domain of asymptotic stability of (Xo, 0).
Then by construction, C, Do(l f) D, where r/is an arbitrary parameter such
that 0 < r/< 1. Furthermore from the definition above, O, C, Do(l fq D.
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From the continuity of V, C, is a closed subset of Do(l f’l D and O7
is an open

subset of C,.
Let (x(t), y(t)) be a solution of (4.1) such that (X(to), y(to)) O, for some o.

Then w(t) x(t) xo and y(t) are solutions of (4.9) such that (W(to), y(to) f-,.
Therefore, since ,.9)(w, y) < 0 in l, V(w(t), y(t)) <= V(w(to), y(to)) < 1- l for

>= o Therefore for >= o, (x(t), y(t))d C,.
COROLLARY 4.3. Let O(l) I..J o<,< 07. Then E O(l) Ao, the domain of

stability of the integral manifold for (2.7).
Proof. Let (01,xl, yl) E x O(1). Then there is some r/(0, l) such that

(Xl, yl) O,. Then Ek O, c Ao. Therefore Ek O(1) Ao.
The proofs of the previous results have been included for completeness since

they are quite analogous to the proofs developed by Loud and Sethna [11], as
mentioned above, in the next sections we will apply these results to several
examples, which have been discussed from other points ofview by Hale [5, pp. 145-
169]. In order to do so however we will need to construct Liapunov functions
for quasi-linear systems. A method for doing this has been given in Krasovskii
[8, p. 87], which we will briefly review here.

Let

(4.10) :t Px + ok(x),

where P has all its eigenvalues with negative real parts. Choose a negative definite
quadratic form

(4.11) W(x) = xTCx,

where xT is the transpose of x, and C is symmetric and positive definite. Construct

(4.12) V(x) xtAx,

whereAr=AandprA + AP -C.
Using (4.12) compute g(4.o)(X) as

(4.13) (4.10)(X) W(x) + dp(x)TAx + xTAdp(x).

Let tk(x) have the special form

(4.14) (x)- H(x)x,

where H(x) (hij(x)) for some functions hij(x) of the vector x. Then one can write

(4.15) 4.1 o)(X) xTE(x)x

where E(x) C H(x)’A AH(x). The set of values for which (4.15) is negative
definite can be determined by using Sylvester’s rule of principal minors. That is,
for the matrix E(x) to generate a positive quadratic form .o)(X) there must
exist /> 0 such that the principal minors, Ap, satisfy

(4.16) A, > 7,’", A1 >

uniformly in x.
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(5.1)

5. van der Pol equation. Consider the system

dgx
e(1 x2)

dx
dt2 -d-f + x O.

This system is equivalent to

(5.2) dx1 dx2
dt

x2, dt -x + e(1 xi)x2

Introduce the change of coordinates

(5.3) x p COS 0, X2 p sin 0,

where p >_ 0. Then (5.2) becomes

dO
+ e(1 p2 cos2 0) sin 0 cos 0,

dt
(5.4)

d___p_p e(1 /9
2 cos2 0)/9 sin2 0.

dt

System (5.4) is of type (2.7) with the y equation absent.
To apply the theory begin by taking the domain D to be any large, but bounded,

interval containing p 2. For the purpose here take D [0, Po], where 2 << Po.
Clearly H1-H3 are satisfied and the averaged system for (5.4) is given by

(5.5) d--t--= d--t-= --Now, (p/2)(1 p2/4) 0 iff p 0, p 2.
The Jacobian of (p/2)(1 p2/4)is 1/2 3p2/8. At p 2 its value is negative

and at p 0 its value is positive. Hypothesis H4 is satisfied for p 2. Note here
that p 0 will correspond to the unstable origin for (5.2).

If the change of variables r p 2 is introduced into (5.5), then

dr erdO= -r (6r+rz)(5.6 t t g
where r -2. Then, the second equation of (5.6) is of the form (4.9).

From Theorem 2.2 system (5.4) has a one-parameter, asymptotically stable,
integral manifold represented parametrically by p f(0,), which satisfies
f(O, 0)= 2. This manifold represents a periodic orbit of (5.2) and therefore of
(5.).

One can use Corollary 4.3 to estimate the domain of stability of p f(O, ).
Consider v(r) r. Then 5.6)(r) 2rP -(er/4)(r + 2) x (r + 4) which satis-
fies .6)(r) < 0 iff r > -2, r 0. Let be a real number such that (Po 2) < I.
As in Theorem 4.2 take {r[v(r) < l}. Then r 0 is asymptotically stable,
and l (-2,). As in Theorem 4.2, Do(l)= (0,2 + 1) and Do(l D

(0, Po] and for 6 (0,/), _, (- 2, l ). Therefore O (0, Po). Thus
O (0, Po) and therefore by Corollary 4.3, E x (0, Po)c Ao, where Ao is the
domain of stability of the integral manifold p f(O, ) for (5.4), where is su-
ciently small.
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Transforming back to (5.2), (xl(O), X2(0)), XI(0)--" f(O, e) cos 0, X2(0
f(O, e)sin 0, is an asymptotically stable one-parameter integral manifold of

(5.2), periodic in 0 of period 2n, and furthermore, for e suitably restricted, any
solution of (5.2) beginning in {(xl, x2)10 < x21 + x22 < p} is attracted to the
stable manifold.

(6.1)

6. Forced van der Pol equation. For this example consider the equation

d2z
g(1 2 dz

dt2
z )- + z A sin xft + B sin v/t.

This is equivalent to the system

dz
dt =z2’

(6.2)
dz2

--Z + g(l Z)Z2 %. A sin xt + B sin xt,
dt

where e > O, A and B are parameters. Introduce the following change of co-

ordinates:

Z X COS %" X2 sin A sin x/t (B/2)sin x//t,
(6.3)

z2 -Xl sin + x2 cost Ax/ cos x/-t (Bx//2)cos x/t.
Then through this change of coordinates (6.2) is equivalent to

dxx -e(1 z2)z2 sin t,
dt

(6.4)
dx2 (1 z)z cos t,
dt

where z and Z2 are given by (6.3). The averaged system of(6.4) is then

(6.5)

dx exx [2(2 g(A B)) (xZ + XzZ)],
dt 8

dx2 3X2 [2(2 g(A B)) (x2 + x)],
dt 8

where.g(A,B) A2 + B2/4.
Consider two cases: (a) g(A, B) > 2, (b) g(A, B) < 2. Case (a). g(A, B) > 2.

Let go g(A, B). Then (6.4) is of the form 2, eF(t, x), where F is almost periodic
in with basic frequencies x/, x/. The averaged system (6.5) is of the form
2. eFo(x). From (6.5) it is clear that the origin x x2 0 is the only equilibrium
point for (6.5), and by a simple computation the Jacobian c3Fo(O)/c3x < 0. One
can now use Theorem 4.2 by taking the Liapunov function V(x, x2) x2 + x22
It is clear that (6.5)(x1, x2) (e/4)(x2 + x22)[2(2 go) (x + x2)]. Since 2 go
< 0, 6.5)(x, x2) < 0 for (xl, x2) (0, 0). Take D {(xa, Xz)lX2 + x22 < p)} for
a fixed but large Po > 0. If > p, then Dl 0 D. By Theorem 4.2, O c Ao,
the domain of stability of the integral manifold for (6.4) which in this case is an
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almost periodic solution of (6.4) with basic frequencies x/, x/, since the 0
equation is missing. In this case the results are equivalent to those obtainable
by the methods of Sethna and Moran [13].

Case (b). g(A, B) < 2. The averaged system (6.5) now has a family of non-
isolated equilibrium points given by x2 + x 2(2 go)- Furthermore (0, 0) is
also an equilibrium point of (6.5) but not of (6.4). To attack this problem return
to system (6.2) and introduce the change of variables

(6.6)
z x sin 0 A sinx (B/2)sinx t,

cos 0 cos cos

and get

(6.7)

dO e
-(1 z2)z2 sin 0,

dt x

dx
e(1 Z21)Z2 COS 0,

dt

where z and z2 are given by (6.6). The averaged system then becomes

dO dx ex
(6.8)

dt
1,

dt 8
[2(2- go)- x2]

The second equation in (6.8) has two equilibrium points x 0 and x x//2(2 go).
The Jacobian of the second equation in (6.8) is positive for x 0 and negative
for x w/Z(} go).

In (6.7) there is a singularity at x 0 in the function associated with (R) of
(2.7). Isolate x from 0 by taking D= {xlPl <X<Po} for p >0 and Po
>> x//2(2 go). Then for e sufficien small, by Theorem 2.2 there exists a function
f(t, O, ) with f(t, 0, 0) x//2(2 go), periodic in 0 of period 2rt, almost periodic
in with basic frequencies x, xfl and such that x f(t, O, )is an integral
manifold of (6.7). According to Hale [5, pp. 163-164] there is also an almost
periodic solution of (6.7) near 0 but for small this solution would fall out of
ED.

Let r x x//2(2 go). Then the second equation of (6.8) becomes

dr e(2 go) er (3x//2i- go)r + r2)(6.9)
dt 2

r --ff
Let V(r) r2 and note that since x > P l, r > p x//2(2 go). Set

Now

’l-- {rlv(r)< 1, r > P x//2( go)}.

6.9)(r)-- --e(2 go)r2 -(e/4)r2(3w/2(2 go))r + r2

For r > pl- x//2(2- go), V6.)(r)< 0. Take I> p x. Then 0(I)= D and, using
Corollary 4.3, E D c Ao, the domain of stability of the integral manifold
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x f(t, O, ).

7. Coupled van der Pol system. Consider the system

(7.1)
1 - Z1 e(1 zEx az22),

e. + ;z ( z z),

where e > 0, a > 0, > 0, and 1 2> 0, 2 2> 0 such that the nonresonance
conditions pj 0 (mod Pk), J - k, and kP2 nt- lpl "/= 0 for all integers k, such that
[kl + Ill _-< 3, are satisfied. This system has also been studied by Hale [5, p. 165].

Transform (7.1) first by the variables ul Zl, u2 1, Wl z2, w2 2.
System (7.1) becomes

//1 --U2
(7.2)

l,

//2 21b/1 + e(1 u2 aw21)uz,
-,w, + ( u w)w.

Next transform (7.2) by introducing

Ul NI sift /../101,
(7.3)

w .2 sin 202,

/22 fllN//-X1 COS ill01,

W2 pZN//2 COS 202

where it will be assumed that x l, x2 0. Then (7.2) becomes

(7.4)

01 (e/2#l)(sin 2#0 2x sin 3 PlO1 COS ]AIO

ax2 sin 2101 sin2 202),

02 (e/Epz)(sin 2/t202 (ZX sin2 101 sin 2202
--2X2 sin3/./202 cos ]./202),

1 2eXl(cOs2/’/101 (Xl/4) sin2 2#101 axE co$2/./101 sin2 /202),

32 2/;X2(cOS2 ]’/202 OX1 sinE [’/101 COS2 #202 (X2/4) sinE 2]/202)"

This system is of the form (2.7) without the y equation. The averaged system is
then given by

(7.5a) 01 1, 02 1,

21 exl 4
(7.5b)

92 gX2
OX X2

2 4

The last two equations (7.5b) have been decoupled from the first two, (7.5a),
which allows one to investigate the set of equilibrium points of (7.5b). These are
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given by

1. XI=X2 =0,

2. Xl 0, X2 4,

3. X1 4, X2 0,

4- 8a
X2_.4. x 4a

4- 8
1 4ao

Equilibrium point 4 will be the only one of interest in this example. If one translates
the axes for system (7.5b) to point 4 by introducing

4 82(7.6) w =x- 1-4 WE =X2--

into (7.5b) one gets

(7.7)
4ao] Wl

+
4ao w2 w 1w2,

4a ]w1+

4 2

w2
w2 4 2ww2"

In order to simplify the notation somewhat let

(7.8)

2a- 4a2- 2a
Pl 4a0’ P2 4a

402 20 20-
q

4a0
q2 4a0"

A necessary and sufficient condition for the origin to be asymptotically stable for

(7.9)
dw dw2
dt

pw + P2W2, dt
qlw1 q- q2w2

is for A P.q2 qlP2 > 0 and P -F q2 < 0. From (7.8),

(1 2a)(1 20) 2(a + - 1)(7.10) A
4a P q- q2

4a

The asymptotic stability of the origin can now be characterized in terms ofa
and e. In particular, with a little algebra, the origin is asymptotically stable pro-
vided

1. a>1/2,1/4a<ot<1/2,
2. 1/4or < a < 1/2,1/2 < ,
3. O<a<1/2,0<e<1/2.
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Reconsidering (7.7) it is easy to see that this system can be put in the proper
form for generating a Liapunov function as described in 4. In fact, set

(])I(W1, W2) hll(W w2)w --t- hl2(W1, w2)w2,

t2(Wl, w2) h21(Wl, w2)w1 -1-- h22(Wl, w2)w2,

where

(7.11)

W a
//12hll 4

W2h2 2w2, h22 4

and Pll Pl, P12 P2, P21 ql, P22 q2" Then, consider the negative definite
quadratic form

W(w

where Cll 1, c12 0, c21 0, c22 1, and solve PrA + AP -C fbr the
A matrix. In this case one need only solve

(7.12)

2allPl -t- 2a12P21 1,

allpl 2 + al2(Pll -k- P22) + a22P21 0,

2a12P12 + 2azzP2 2 --1,

due to symmetry. This is a tridiagonal system and a simple though cumbersome
calculation (see Arden and Astill [1, pp. 144-145])for this tridiagonal system yields

(7.13)

(1 + 2pza12
all

P12- 2PllP21a22
a12 2(PZl + PllPZ2 PlzP21)’

--(p21 + P11P22 P12P2f)- P2
a2 2P22(P2x + P11P22 P12P21) 2plP12P21

The final result is obtained by back substitution.
Note that the coefficients of the resulting Liapunov function are functions

of the parameters a and a and could be obtained, if desired, by using (7.8). For
illustration, let a e Then Pl ---, P12 ---, P21 --3, P22 --3,

Then the associated V functionand alx 1, a12-- --g, a21 ----, a22
would be

V(Wl, w2) w21 W lW2 -t- W22
and

(7.14) (7.7)(W1, W2) --WTE(w)w,
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where w is the column vector with components w l, w2 and

W1 W2
2 8’

el2 e21 0,

W1 W2
e22--- 1- ---- + 2"

The criteria for negative definiteness of(7.14) aree > 7 and ele22 e2e2 > 7
for some positive 7.

Finally one can take in Corollary 4.3,

w w.> 7, - -+ > 7, and0(/)= (w,w)ll
2 8 2 8 8

wxw2 + w < 1}.W
In this case E2 O(l) is contained in the domain ofstability ofan integral manifold
that is geometrically represented by a torus. In particular there exist functions
f(O, 02,e),f2(O, 02,e) that are periodic in 0, 02 of periods 2/, 2n/2 such
that f(O, 02, 0) (4 8a)/(1 4a), f2(O, 02,0) (4 8)/(1 4a) and the
integral manifold is given by

z, x//A(0,, 02, e)sin/,0a, z2 %//f2(01, 02 )sin/202.

8. Appendix. Theorem 3.5 and Lemmas 3.2, 3.3, 3.4 yield an existence of
an e* satisfying the required conditions, but implicitly include in the proof a
means for constructing this e*. In order to generate an algorithm for computing
e* several quantities must be determined.

First, one must specify the set D. Then one must" (i) compute the bound M
on the functions (R), X, Y on D. (ii) Compute the Lipschitz constant 2 and construct
the function h(e) for uniform continuity in e. (iii) Determine the constants c and
b such that for > 0,

(8.1) eaTlt C e -bt.

(iv) Pick L and/.
Once these values have been determined then inequality (3122) gives an

estimate for v. From this estimate an appropriate value for a can be made so
that (note (3.15))

a < v/(32).

Once a has been fixed the function G(e) can be constructed from (3.19), given the
dimensions of 0, x, y.

After determining this value one can use inequalities (3.35) and (3.38) to
estimate l0 0l, I xl, I. Yl and determine e so that

(8.2) l0- 0l < , , .
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Note that
#

so that first of all one needs to choose e* so that 0 < e =<. e*, then

(8.3) G(e) =< .
A similar estimate holds for It/- xl and I Yl.

In order to satisfy (8.2) it is sufficient that

v<g,

(8.4) [] h(e) < 8’

and

e2’zt" + (22 + 3M) +
Id(0 11 211A Ilko IIA IIcM1
2 + b + b- -j G(,)< .

The inequality with v is just (3.22). This value is picked first, then e* is chosen.
One can now use these inequalities in an actual estimate for the van der Pol

equation (5.1) for example. From 5, if one takes the set D so that

D-- {pl0=<pB, 2<<B},
then the following estimates can be obtained on E x D"

(8.5) IO(0, P)I <= + B’, IR(O, p)l < B + B3

If one sets M B + B3, then from (8.5), 10(0, p)[ =< M and [R(O, p)[ _< M on
E x D. An estimate for the Lipschitz constant yields, for (0, p), (0’, p’)e E x D,

(8.6)
10(o, p)- o(o’, p’)l 4(B + 1)2[10- 0’1 + Ip p’l],

[R(O, p)- R(O’, P’I <= (29 + 4B2)[10- 0’l + IP P’I].

If one sets 2 4(B + 1)2, then this 2 is a Lipshitz constant for both (R) and R.
If one defines the function

2, 0=<t_<l,
(8.7) fx(t)=

2It, l<t,

then it is possible to show that, if 8 -< B, which one can suppose since 2 << B,

f(t) = + -- f(t)
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satisfies the inequalities - 19"(0 + s, p) ds <= f(t),

(8.8)

-[ R*(O + s, ,o) ds <= f(t).

Thn if L > 0 is fixed, the function

F(e) sup sf(s/e)
O<=s<=L

can be computed and satisfies the estimate

(8.9) F(e) =< (4B + B3

8
/3"

Notice that this estimate is independent of L. From (8.9) the function G(/3) can be
estimated as

G(e) (1 + I)F(/3),
where 1 =< 45/(16a), a < v/(32) and v is chosen, using (8.4), so that

(8.10) v < [,/8]/3- 22L.

Since the y equation is not present in the transformed van der Pol system
(5.4), the values for c and b can be ignored and only those inequalities in (8.4) that
do not involve c and b need be estimated. Furthermore h(e) = 0 and d(/3) =- 1.
Thus one needs only choose e* so that for 0 < e =</3*

(811) /32L[22+3MIG(/3)<#2 8

In particular, if B 10, say, then M 1010, 2 484. Let L 48 and/ = 10- a.
Then take

484 2
V e 4.09 l0-3

(16)(10a)

Then,

a 1.41 x 10 -6.
(6)(484)

45
Ia _< 2 x 106 and G(/3) _< (2 x 106)F(/3)

or G(/3) =< (2 x 106)(1040)/8/3. Using (8.3) and (8.11) one must choose/3 so that

e2 F2(484)[_,8-4+ 30301(2 x 106)(1040)8 /3 _----< 10-38
and

(2 x 106)(1040) 10- 3

8 2
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Both of these inequalities are satisfied provided

0 < <_* 7.88 x 10-5.

These estimates point out rather graphically that the results obtained are for
truly "small" parameter problems. It would be an interesting problem to compute
hard estimates for all of the inequalities in the proofs to determine the extent to
which they could be used for numerical approximations. Even ifthe computational
efficiency might be determined to be questionable this would be a worthwhile fact
to know.
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